Dermal glucocorticoids are uncoupled from stress physiology and infection.

皮肤糖皮质激素与应激生理和感染无关

阅读:8
作者:Quadros Victor, Inman Brady, McDonnell Nina, Williams Kaitlyn, Romero L Michael, Woodhams Douglas C
Ongoing amphibian population declines are caused by factors such as climate change, habitat destruction, pollution and infectious diseases not limited to chytridiomycosis. Unfortunately, action is taken against these factors once population collapses are underway. To avoid these post hoc responses, wildlife endocrinology aims to analyse physiological mediators that predict future population declines to inform wildlife management. Mediators typically investigated are stress hormones known as glucocorticoids, which are produced by the Hypothalamus-Pituitary-Interrenal axis (HPI axis). The HPI axis is the part of the endocrine system that helps amphibians cope with stress. Chronic increases in glucocorticoids due to stress can lead to immune dysfunction, which makes amphibians more susceptible to infectious diseases. Despite this predictive potential of glucocorticoids, interpretation of glucocorticoid data is confounded by sampling design and type. Glucocorticoid monitoring classically involves blood sampling, which is not widely applicable in amphibians as some are too small or delicate to sample, and repeated samples are often valued. To address this, we tried to validate skin swabbing via corticosterone (CORT) and adrenocorticotropin hormone (ACTH) injections in adults of two amphibian species: Eastern red-spotted newts, Notophthalmus viridescens viridescens, with natural skin infections with Batrachochytrium dendrobatidis (Bd) upon collection in the field, and Northern leopard frogs, Rana (Lithobates) pipiens, raised in captivity and naïve to Bd exposure. Further, we determined the predictive potential of skin glucocorticoids on Bd load in the field via correlations in Eastern red-spotted newts. We found that hormones present in the skin are not related to the HPI axis and poorly predict infection load; however, skin hormone levels strongly predicted survival in captivity. Although skin swabbing is not a valid method to monitor HPI axis function in these species, the hormones present in the skin still play important roles in organismal physiology under stressful conditions relevant to wildlife managers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。