Intracellular protein aggregation is a hallmark of aging and contributes to pathology in some age-associated diseases. In hereditary adult-onset neuromuscular diseases (NMDs), protein aggregates play a key role in disease onset and progression. The wild-type Poly(A) binding protein nuclear 1 (PABPN1) forms benign nuclear aggregates, whereas a short trinucleotide expansion leads to the formation of pathogenic aggregates, a hallmark of Oculopharyngeal Muscular Dystrophy (OPMD). In OPMD, the mutant PABPN1 causes skeletal muscle weakness. So far, the structural differences between benign and pathogenic protein aggregates and their effects on muscle cell biology remain poorly understood. We employed an array of advanced imaging modalities to explore the morphological differences between nuclear aggregates formed by non-pathogenic and pathogenic PABPN1 variants. Through analyses spanning micro- to nanoscale, we identified distinct structural features of aggregates formed by wild-type and expanded PABPN1. We demonstrate that these differences were more pronounced in differentiated muscle cells compared to proliferating cells. We further linked the structural features of PABPN1 aggregates to muscle cell biology, namely alterations in mitochondrial function and proteasomal activity. Our findings provide new insights into the structural distinctions between pathogenic and non-pathogenic aggregates and their implications for cellular dysfunction in NMDs.
Polyalanine Expansion in PABPN1 Alters the Structure and Dynamics of Its Nuclear Aggregates in Differentiated Muscle Cells.
PABPN1 中的聚丙氨酸扩增改变了分化肌肉细胞中其核聚集体的结构和动力学
阅读:3
作者:Mallon Sander D, Bos Erik, Sheikhhassani Vahid, Shademan Milad, Voortman Lenard M, Mashaghi Alireza, Sharp Thomas H, Raz Vered
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Jun 30; 39(12):e70748 |
| doi: | 10.1096/fj.202501097R | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
