Uremic toxin receptor NR1H3 contributes to hyperlipidemia- and chronic kidney disease-accelerated vascular inflammation, which is partially suppressed by novel YBX2 anti-ROS pathway.

尿毒症毒素受体 NR1H3 会导致高脂血症和慢性肾脏病加速血管炎症,而新型 YBX2 抗 ROS 通路可以部分抑制这种炎症

阅读:4
作者:Lu Yifan, Sun Yu, Saaoud Fatma, Xu Keman, Shao Ying, Han Baosheng, Jiang Xiaohua, Martinez Laisel, Vazquez-Padron Roberto I, Mohsin Sadia, Zhao Huaqing, Wang Hong, Yang Xiaofeng
Hyperlipidemia and chronic kidney disease (CKD) are well-established risk factors for cardiovascular disease and act synergistically to promote vascular inflammation and disease progression. However, the mechanisms underlying this synergetic effect remain largely unknown. Using a mouse model combining hyperlipidemia (via high-fat diet feeding, HFD) with 5/6 nephrectomy-induced CKD, we made the following significant findings: 1) HFD + CKD upregulated 1179 genes in mouse aortas and induced prominent reactive oxygen species (ROS), far more than either HFD or CKD alone. 2) HFD + CKD upregulated 86 CRISPRi-identified mitochondrial ROS regulators, 36 CRISPRi-identified cellular ROS regulators, and 19 GSEA-collected ROS regulators. These changes were associated with the upregulations of 48 cytokines, 7 highest toxicity uremic toxin receptors-including CD1D, FCGRT, AHR, IL6RA AGER, NR1H3 and NPY5R-in aortas. 3) These uremic toxin receptors emerged as novel promoters of inflammation and trained immunity. Deficiencies in CD1D, AHR, AGER, and the trained immunity promoter SET7 each downregulated up to 5.5 % of the genes upregulated by HFD + CKD. Conversely, activation of NR1H3 using an agonist upregulated up to 12.2 % of these genes. 4) The expression of 46 cytokine genes was strongly associated with NR1H3 upregulation. 5) The NR1H3 agonist also induced the expression of 28 ROS regulators, including YBX2, a novel anti-ROS transcription factor and RNA-binding protein, suggesting a potential negative feedback mechanism. YBX2 deficiency increased the cellular ROS level, while YBX2 overexpression suppressed 27 proinflammatory genes induced by HFD + CKD. Our findings provide novel insights into the role of the NR1H3-YBX2 axis in regulating inflammation accelerated by hyperlipidemia and CKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。