Hybrid-based design has gained significant interest in the development of novel active substances with anti-inflammatory properties. In this study, two series of new pyrazole-pyridazine-based hybrids, 5a-f and 6a-f, were designed and synthesized. Molecules containing pyrazole and pyridazine pharmacophores in a single molecule, each with a unique mechanism of action and different pharmacological characteristics, are believed to exert higher biological activity. The cell viability of all compounds was evaluated using MTT assay in LPS-induced RAW264.7 macrophages. In vitro COX-1 and COX-2 inhibition assays were performed for the investigation of the anti-inflammatory activity of target compounds. Trimethoxy derivatives 5f and 6f were the most active candidates, demonstrating higher COX-2 inhibitory action than celecoxib, with IC(50) values of 1.50 and 1.15 μM, respectively. Bromo derivative 6e demonstrated a COX-2 inhibitory activity comparable to celecoxib. Further, the ability of compounds 5f, 6e, and 6f to inhibit the generation of specific pro-inflammatory cytokines and mediators, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and prostaglandin-E2 (PGE-2), in RAW264.7 macrophages stimulated by LPS was also estimated. Compounds 5f and 6f demonstrated the most potent activity. Morover, according to the investigation using molecular modeling studies, derivatives 5f and 6f showed respectable binding affinity towards the COX-2 active site compared to the reference ligand. Moreover, the ADME parameters, physicochemical characteristics, pharmacokinetic characteristics, and l of the most potent compounds were also computed.
New pyrazole-pyridazine hybrids as selective COX-2 inhibitors: design, synthesis, molecular docking, in silico studies and investigation of their anti-inflammatory potential by evaluation of TNF-α, IL-6, PGE-2 and NO in LPS-induced RAW264.7 macrophages.
新型吡唑-哒嗪杂合物作为选择性 COX-2 抑制剂:设计、合成、分子对接、计算机模拟研究,并通过评估 LPS 诱导的 RAW264.7 巨噬细胞中 TNF-α、IL-6、PGE-2 和 NO 来研究其抗炎潜力
阅读:6
作者:Osman Eman O, Khalil Nadia A, Magdy Alaa, El-Dash Yara
| 期刊: | RSC Medicinal Chemistry | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Jun 5; 15(8):2692-2708 |
| doi: | 10.1039/d4md00135d | 靶点: | IL-6 |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
