The Impact of Uterus-Derived Prostaglandins on the Composition of Uterine Fluid During the Period of Conceptus Elongation in Dairy Heifers.

子宫内前列腺素对奶牛胚胎伸长期子宫液成分的影响

阅读:5
作者:Zhang Beibei, Han Yuan, Wang Shengxiang, Cheng Ming, Yan Longgang, Zhou Dong, Wang Aihua, Lin Pengfei, Jin Yaping
In ruminants, the survival and development of the conceptus are heavily dependent on the composition of the uterine lumen fluid (ULF), which is influenced by prostaglandins (PGs). However, the variations in underlying PG-mediated ULF remain unclear. Herein, cycling heifers received an intrauterine infusion of vehicle as a control (CON) or meloxicam (MEL) on days 12-14 of the estrous cycle. Then, the ULF was collected on day 15 and alternations in its protein and lipid levels were analyzed. The suppression of prostaglandins induced by meloxicam resulted in 1343 differentially abundant proteins (DAPs) and 59 differentially altered lipids. These DAPs were primarily associated with vesicle-mediated transport, immune response, and actin filament organization, and were mainly concentrated on the ribosome, complement and coagulation cascades, cholesterol metabolism, chemokine signal pathway, regulation of actin cytoskeleton and starch and sucrose metabolism. These differential lipids reflected a physiological metabolic shift as the abundance of cell membrane-related lipids was modulated, including an accumulation of triacylglycerols and reductions in lysophosphatidylcholines, hexosyl ceramides, ceramides, and sphingomyelins species. Integration analysis of the DAPs and differentially altered lipid metabolites revealed that glycerophospholipid metabolism and choline metabolism were the core pathways. These findings highlight the potential roles of prostaglandins in ULF, providing new insights into the contributions of prostaglandins in the development of the conceptus.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。