The Impact of Uterus-Derived Prostaglandins on the Composition of Uterine Fluid During the Period of Conceptus Elongation in Dairy Heifers.

子宫内前列腺素对奶牛胚胎伸长期子宫液成分的影响

阅读:8
作者:Zhang Beibei, Han Yuan, Wang Shengxiang, Cheng Ming, Yan Longgang, Zhou Dong, Wang Aihua, Lin Pengfei, Jin Yaping
In ruminants, the survival and development of the conceptus are heavily dependent on the composition of the uterine lumen fluid (ULF), which is influenced by prostaglandins (PGs). However, the variations in underlying PG-mediated ULF remain unclear. Herein, cycling heifers received an intrauterine infusion of vehicle as a control (CON) or meloxicam (MEL) on days 12-14 of the estrous cycle. Then, the ULF was collected on day 15 and alternations in its protein and lipid levels were analyzed. The suppression of prostaglandins induced by meloxicam resulted in 1343 differentially abundant proteins (DAPs) and 59 differentially altered lipids. These DAPs were primarily associated with vesicle-mediated transport, immune response, and actin filament organization, and were mainly concentrated on the ribosome, complement and coagulation cascades, cholesterol metabolism, chemokine signal pathway, regulation of actin cytoskeleton and starch and sucrose metabolism. These differential lipids reflected a physiological metabolic shift as the abundance of cell membrane-related lipids was modulated, including an accumulation of triacylglycerols and reductions in lysophosphatidylcholines, hexosyl ceramides, ceramides, and sphingomyelins species. Integration analysis of the DAPs and differentially altered lipid metabolites revealed that glycerophospholipid metabolism and choline metabolism were the core pathways. These findings highlight the potential roles of prostaglandins in ULF, providing new insights into the contributions of prostaglandins in the development of the conceptus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。