BACKGROUND: Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT). METHODS: In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups. Supplements were consumed twice daily for 28 days. Biochemical assessments included NO metabolites (nitrate/nitrite), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD) activity, and antioxidant capacity, measured pre- and post-TT. RESULTS: NO metabolites were significantly elevated post-supplementation (p = 0.03); however, no significant interaction effects were observed for NO metabolites, FRAP, SOD, or antioxidant capacity across the groups (p > 0.05). Post-hoc analyses revealed that QCT significantly reduced FRAP concentrations compared to PL (p = 0.01), while no significant changes in SOD or antioxidant capacity were found across any groups. CONCLUSIONS: These findings suggest that combined and independent QCT and CIT supplementation did not significantly improve these biomarkers, suggesting that baseline training adaptations, supplementation timing, and individual variability may influence the efficacy of these compounds in enhancing exercise performance and oxidative stress markers. The ergogenic efficacy of QCT + CIT on antioxidant-related markers remains inconclusive.
Effects of Quercetin and Citrulline on Nitric Oxide Metabolites and Antioxidant Biomarkers in Trained Cyclists.
槲皮素和瓜氨酸对训练有素的自行车运动员体内一氧化氮代谢物和抗氧化生物标志物的影响
阅读:5
作者:Kurtz Jennifer A, Feresin Rafaela G, Grazer Jacob, Otis Jeff, Wilson Kathryn E, Doyle J Andrew, Zwetsloot Kevin A
| 期刊: | Nutrients | 影响因子: | 5.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 9; 17(2):224 |
| doi: | 10.3390/nu17020224 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
