The prevalence of nonalcoholic steatohepatitis (NASH) is rising annually, posing health and economic challenges, with limited treatments available. Diosgenin, a natural steroidal compound found in various plants, holds potential as a therapeutic candidate. Recent studies have confirmed diosgenin's anti-inflammatory and metabolism-modulating properties. However, its therapeutic effects on NASH and the underlying mechanisms are still unclear. This study aims to explore diosgenin's protective effects and pharmacological mechanisms against NASH using network pharmacology, molecular docking, and experimental validation. We gathered potential targets of diosgenin and NASH from various databases to generate protein-protein interaction (PPI) networks. GO and KEGG pathway enrichment analyses identified key targets and mechanisms. Molecular docking confirmed the binding capacity between diosgenin and core target proteins. Additionally, a NASH cell model was developed to validate the pharmacological effects of diosgenin. Our investigation identified nine key targets (ALB, AKT1, TP53, VEGFA, MAPK3, EGFR, STAT3, CASP3, IGF1) that interact with diosgenin. Molecular docking indicated potential bindings interactions, while enrichment analyses revealed that diosgenin may enhance fatty acid metabolism via the PI3K-Akt pathway. Cellular experiments confirmed that diosgenin activates this pathway, reduces SCD1 expression, and decreases triglyceride and IL-6 levels. Our study elucidates that diosgenin may ameliorate triglyceride deposition and inflammation through the PI3K-Akt pathway.
Network pharmacology-based investigation of the pharmacological mechanisms of diosgenin in nonalcoholic steatohepatitis.
基于网络药理学的薯蓣皂苷元在非酒精性脂肪性肝炎中的药理机制研究
阅读:4
作者:Gu Peiyuan, Chen Juan, Xin Jingxin, Chen Huiqi, Zhang Ran, Chen Dan, Zhang Yuhan, Shao Shanshan
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 26; 15(1):10351 |
| doi: | 10.1038/s41598-025-95154-z | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
