Tongxinluo promotes axonal plasticity and functional recovery after stroke.

通心络能促进中风后轴突可塑性和功能恢复

阅读:3
作者:Wang Xiaoting, Huang Xiaoqin, Yang Mengqi, Pan Xueying, Duan Meiyi, Cai Hui, Jiang Guimiao, Wen Xianlong, Zou Donghua, Chen Li
BACKGROUND: The aim of this study was to investigate the neural plasticity in contralesional cortex and the effects of tongxinluo (TXL) in cerebral ischemic rats. METHODOLOGY: We used stroke-prone renovascular hypertensive (RHRSP) cerebral ischemia rat models to study the effect of TXL and the underlying mechanisms. We performed foot-fault and beam-walking tests to evaluate the motor function of rats after cortical infarction. Biotinylated dextran amine (BDA) was used to track axonal sprouting and neural connections. RESULTS: TXL enhanced the recovery of motor function in cerebral infarction rats. TXL increased axonal sprouting in the peri-infarcted area but not in the corpus callosum, indicating in situ origination instead of crossing between cortical hemispheres through the corpus callosum. TXL promoted the sprouting of corticospinal axons into the denervated side of spinal gray matter. The synaptophysin (SYN)-positive intensity in the peri-infarcted area of TXL-treated group was greater than that in the vehicle group. We observed co-localization of SYN with BDA-positive fibers in the denervated spinal cord gray matter in the TXL group, suggesting that axonal remodeling and synaptic connections were promoted by TXL. CONCLUSION: TXL may promote the recovery of neurological function by promoting the axonal remodeling and synapse formation of motor neuronal fibers after focal cortical infarction in hypertensive rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。