Nanoparticles find increasing applications in life science and biomedicine. The fate of nanoparticles in a biological system is determined by their protein corona, as remodeling of their surface properties through protein adsorption triggers specific recognition such as cell uptake and immune system clearance and nonspecific processes such as aggregation and precipitation. The corona is a result of nanoparticle-protein and protein-protein interactions and is influenced by particle design. The state-of-the-art design of biomedical nanoparticles is the core-shell structure exemplified by superparamagnetic iron oxide nanoparticles (SPIONs) grafted with dense, well-hydrated polymer shells used for biomedical magnetic imaging and therapy. Densely grafted polymer chains form a polymer brush, yielding a highly repulsive barrier to the formation of a protein corona via nonspecific particle-protein interactions. However, recent studies showed that the abundant blood serum protein albumin interacts with dense polymer brush-grafted SPIONs. Herein, we use isothermal titration calorimetry to characterize the nonspecific interactions between human serum albumin, human serum immunoglobulin G, human transferrin, and hen egg lysozyme with monodisperse poly(2-alkyl-2-oxazoline)-grafted SPIONs with different grafting densities and core sizes. These particles show similar protein interactions despite their different "stealth" capabilities in cell culture. The SPIONs resist attractive interactions with lysozymes and transferrins, but they both show a significant exothermic enthalpic and low exothermic entropic interaction with low stoichiometry for albumin and immunoglobulin G. Our results highlight that protein size, flexibility, and charge are important to predict protein corona formation on polymer brush-stabilized nanoparticles.
Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin.
聚合物刷接枝纳米颗粒优先与调理素和白蛋白相互作用
阅读:4
作者:Leitner Nikolaus Simon, Schroffenegger Martina, Reimhult Erik
| 期刊: | ACS Applied Bio Materials | 影响因子: | 4.700 |
| 时间: | 2021 | 起止号: | 2021 Jan 18; 4(1):795-806 |
| doi: | 10.1021/acsabm.0c01355 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
