Tumor relapse remains a significant obstacle to successful therapy. Preclinical animal models that accurately reflect tumor relapse in patients are urgently needed. Here, we employed a dual recombinase-mediated genetic system to genetically trace and ablate proliferating cells in a polyomavirus middle T antigen (PyMT)-induced spontaneous murine breast cancer model. This system enabled the acute ablation of cells that had undergone proliferation within a defined time window, resulting in a drastic tumor shrinkage, followed by a gradual tumor relapse due to the presence of residual low-cycling cells. We then applied single-cell RNA sequencing (scRNA-seq) to unbiasedly compare the tumor ecosystems of the primary and relapsed PyMT tumors. Compared with the primary tumors, the relapsed tumors exhibited a higher proportion of cancer stem cells and pro-tumor γδ T cells, as well as co-expression of Spp1 and Vegfa in multiple myeloid cell populations - features that predict poor therapeutic response and unfavorable outcomes in human breast cancer patients. Collectively, this proliferation tracing and ablation model emulates chemotherapies that preferentially eliminate proliferating cancer cells, serving as a robust tool and a valuable resource for testing novel therapeutic strategies in relapsed tumors.
Modeling tumor relapse using proliferation tracing and ablation transgenic mouse.
利用增殖追踪和消融转基因小鼠模拟肿瘤复发
阅读:13
作者:Zhao Chuang, Zheng Xin-Nan, Huang Han-Ying, Tian Lin
| 期刊: | NPJ Breast Cancer | 影响因子: | 7.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 17; 11(1):73 |
| doi: | 10.1038/s41523-025-00792-1 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
