CryoSift - An accessible and automated CNN-driven tool for cryo-EM 2D class selection.

CryoSift - 一款易于使用且自动化的基于 CNN 的冷冻电镜二维分类工具

阅读:6
作者:Schäfer Jan-Hannes, Calza Austin, Hom Keenan, Damodar Puneeth, Peng Ruizhi, Bogdanović NebojÅ¡a, Lander Gabriel C, Stagg Scott M, Cianfrocco Michael A
Single-particle cryo-electron microscopy (cryo-EM) has become an essential tool in structural biology. However, automating repetitive tasks remains an ongoing challenge in cryo-EM dataset processing. Here, we present a platform-independent convolutional neural network (CNN) tool for assessing the quality of 2D averages to enable automatic selection of suitable particles for high-resolution reconstructions, termed CryoSift. We integrate CryoSift into a fully automated processing pipeline using the existing cryosparc-tools library. Our integrated and customizable 2D assessment workflow enables high-throughput processing that accommodates experienced to novice cryo-EM users.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。