Effectiveness of a Novel Liposomal Methylglyoxal-Tobramycin Formulation in Reducing Biofilm Formation and Bacterial Adhesion.

新型脂质体甲基乙二醛-妥布霉素制剂在减少生物膜形成和细菌粘附方面的有效性

阅读:4
作者:Alluhaim Wed, Alkhulaifi Manal M, Alzahrani Raghad R, Alrfaei Bahauddeen M, Yassin Alaa Eldeen B, Alghoribi Majed F, Alsaadi Ahlam M, Al-Asmari Ahmed I, Al-Fahad Ahmed J, Ali Rizwan, Alhawiti Naif M, Halwani Majed A
Background: The emergence of multidrug-resistant bacteria presents a significant global health threat. Liposomal antibiotics have shown a potential to improve antibiotic delivery and efficacy. This study aimed to develop liposomes encapsulating tobramycin (TOB) and methylglyoxal (MGO) to enhance TOB activity while reducing bacterial adhesion and biofilm formation. Methods: Clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae were characterized using whole-genome sequencing. Liposomes (Lip-MGO-TOB) were formulated using Manuka honey as a surfactant and loaded with MGO and TOB. Antibacterial activity, biofilm formation, and bacterial cell adhesion assays were performed to compare the efficacy of Lip-MGO-TOB against free TOB. Liposome characterization included analyses of morphology, zeta potential, TOB encapsulation efficiency, and stability under various biological conditions. Results: The Lip-MGO-TOB formulation, at a minimum inhibitory concentration (MIC) of 32 µg/mL, reduced the biofilm formation of the P. aeruginosa isolate (PA85) by 68%. Conversely, free TOB, at a MIC of 64 µg/mL, achieved only a 21% reduction. For the K. pneumoniae isolate (KP57), Lip-MGO-TOB inhibited bacterial adhesion to A549 cells at a lower concentration (256 µg/mL) compared to free TOB (512 µg/mL). Lip-MGO-TOB demonstrated sustained drug release over 24 h under tested conditions and retained over 99% of TOB. Conclusions: The Lip-MGO-TOB formulation significantly enhanced TOB activity against resistant bacteria compared to free TOB. Additionally, it provided a stable drug delivery system with controlled drug release. Liposomal TOB represents a promising advancement in combating antibiotic resistance by improving the efficacy and delivery of conventional antibiotics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。