Recent studies have indicated that Lactococcus petauri LZys1 (L. petauri LZys1), isolated from healthy human feces, exhibits a promising probiotic profile in vitro. However, its impact on the physiological status of the host in vivo remains uncertain. The objective of our study was to investigate the effects and mechanisms of orally administering L. petauri LZys1 on gut microbiota and liver function in mice. We administered L. petauri LZys1 through daily oral gavage to C57BL/6 male mice. Subsequently, we analyzed changes in gut microbiota composition using 16S rRNA sequencing and quantified alterations in hepatic-intestinal bile acid (BA) profile. Serum biochemical parameters were assessed to evaluate liver function. Our findings revealed that L. petauri LZys1 led to an increase in body weight, liver mass, and serum aminotransferase levels. Oral administration altered the gut microbiota composition, resulting in reduced diversity and abundance of intestinal bacteria. Additionally, the profiles of BAs were suppressed across organs, associated with the downregulation of the ileum's farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15) signaling pathway. The decrease in circulating FGF15 mediated the downregulation of hepatic fibroblast growth factor receptor 4 (FGFR4)/FXR, disrupting BA metabolism and fatty acid oxidation. Our findings suggest that L. petauri LZys1 may impact liver function by influencing the gut microbiota-mediated ileal FXR-FGF15 axis and inhibiting hepatic bile acid metabolism. IMPORTANCE: This work elucidated the impact of L. petauri LZys1 on host gut microbiota metabolism and hepatic physiological metabolism. We observed that L. petauri LZys1 administration induced liver weight gain and biochemical parameters changes, in addition to a altered gut microbiota and suppressed bile acid (BA) profiles. Furthermore, we propose that changes in liver status are related to the enterohepatic farnesoid X receptor-fibroblast growth factor axis, which alters bile acid metabolism and disrupts liver function. The above findings suggest that attention should be paid to the effect of probiotics on liver function.
Lactococcus petauri LZys1 modulates gut microbiota, diminishes ileal FXR-FGF15 signaling, and regulates hepatic function.
乳酸杆菌 LZys1 调节肠道菌群,减少回肠 FXR-FGF15 信号传导,并调节肝脏功能
阅读:7
作者:Li Ouyang, Zhou Yingshun, Kim Dayoung, Xu Han, Bao Zhijun, Yang Fan
| 期刊: | Microbiology Spectrum | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 13(6):e0171624 |
| doi: | 10.1128/spectrum.01716-24 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
