Endothelial cell apoptosis plays an important role in the pathophysiological mechanism of vascular complications in type 2 diabetes mellitus (T2DM). Argirein, a new synthetic compound was demonstrated to inactivate NADPH oxidase to alleviate cardiac dysfunction in T2DM. Here, we investigated whether argirein medication attenuated the vascular dysfunction in T2DM by inhibiting endothelial cell apoptosis which was associated with NADPH oxidase. The rat aortic endothelial cells (RAECs) were incubated with glucose (30âmM) for 48âhour in vitro. It was shown that high glucose significantly increased the protein expression of BAX (Bcl-2 Associated X protein) and Caspase-3 and decreased Bcl2 (B-Cell Leukemia/Lymphoma 2) protein level in RAECs, which was normalized by argirein medication. The annexin V-FITC bound cell percentage and DNA fragments in agarose electrophoresis were markedly suppressed by argirein to confirm the anti-apoptotic property of argirein in RAECs. Furthermore, we found that argirein blocked the endothelin (ET)-1/Nox4 signal-dependent superoxide (O(2)(-.)) generation, which regulated endothelial cell apoptosis in RAECs. In vivo, argirein intervention relieved the vasodilatory response to acetylcholine and restored the expressions of Nox4 and BAX in the aorta endothelium of high-fat diet (HFD)-fed rats following streptozocin (STZ) injection. For the first time, we demonstrated that argirein could inhibit vascular endothelial cell apoptosis, which was attributed to blocking ET-1/Nox4 signal-dependent O(2)(-) generation in RAECs. This current study revealed the therapeutic effects of argirein to prevent the vascular complication in T2DM through inhibiting endothelial cell apoptosis which was associated with the anti-oxidative property of argirein.
Improvement of vascular dysfunction by argirein through inhibiting endothelial cell apoptosis associated with ET-1/Nox4 signal pathway in diabetic rats.
精氨酸通过抑制糖尿病大鼠中与 ET-1/Nox4 信号通路相关的内皮细胞凋亡来改善血管功能障碍
阅读:3
作者:Su Jie, An Xing-Rong, Li Qing, Li Xiao-Xue, Cong Xiao-Dong, Xu Ming
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2018 | 起止号: | 2018 Aug 22; 8(1):12620 |
| doi: | 10.1038/s41598-018-30386-w | 研究方向: | 细胞生物学 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
