BACKGROUND: Recombinant human growth hormone (rhGH) has shown a great growth-promoting potential in children with idiopathic short stature (ISS). However, the response to rhGH differs across individuals, largely due to genetic and epigenetic heterogeneity. Since epigenetic marks on the methylome can be dynamically influenced by GH, we performed a comprehensive pharmacoepigenomics analysis of DNA methylation changes associated with long-term rhGH administration in children with ISS. RESULTS: We measured DNA methylation profiles before and after GH treatment (with a duration ofâ~â18Â months in average) on 47 healthy children using customized methylC-seq capture sequencing. Their changes were compared and associated with changes in plasma IGF1 by adjusting sex, age, treatment duration and estimated blood proportions. We observed a considerable inter-individual heterogeneity of DNA methylation changes responding to GH treatment. We identified 267 response-associated differentially methylated cytosines (DMCs) that were enriched in promoter regions, CpG islands and blood cell-type-specific regulatory elements. Furthermore, the genes associated with these DMCs were enriched in the biology process of "cell development," "neuron differentiation" and "developmental growth," and in the TGF-beta signaling pathway, PPAR Alpha pathway, endoderm differentiation pathway, adipocytokine signaling pathway as well as PI3K-Akt signaling pathway, and cAMP signaling pathway. CONCLUSION: Our study provides a first insight in DNA methylation changes associated with rhGH administration, which may help understand mechanisms of epigenetic regulation on GH-responsive genes.
Differentially methylated CpGs in response to growth hormone administration in children with idiopathic short stature.
生长激素治疗对特发性矮小症儿童CpG位点差异甲基化的影响
阅读:4
作者:Shao Xiaojian, Le Stunff Catherine, Cheung Warren, Kwan Tony, Lathrop Mark, Pastinen Tomi, Bougnères Pierre
| 期刊: | Clinical Epigenetics | 影响因子: | 4.400 |
| 时间: | 2022 | 起止号: | 2022 May 18; 14(1):65 |
| doi: | 10.1186/s13148-022-01281-z | 研究方向: | 表观遗传 |
| 信号通路: | DNA甲基化 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
