Enhancement of Neural Stem Cell Proliferation in Rats with Spinal Cord Injury by a Combination of Repetitive Transcranial Magnetic Stimulation (rTMS) and Human Umbilical Cord Blood Mesenchymal Stem Cells (hUCB-MSCs).

重复经颅磁刺激 (rTMS) 与人脐带血间充质干细胞 (hUCB-MSCs) 联合治疗可增强脊髓损伤大鼠的神经干细胞增殖

阅读:4
作者:Guo Mengguo, Wu Lixin, Song Zhenyu, Yang Bo
BACKGROUND This study was designed to explore the combined effects of repetitive transcranial magnetic stimulation (rTMS) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transplantation on neural stem cell proliferation in rats with spinal cord injury (SCI). MATERIAL AND METHODS SCI was induced in 90 rats by laminectomy at T10. Fifteen rats each were treated with 0.5 Hz rTMS or 10 Hz rTMS or underwent hUCB-MSC transplantation; 15 each were treated with 0.5 Hz rTMS+hUCB-MSCs or 10 Hz rTMS+hUCB-MSCs; and 15 were untreated (control group). The Basso, Beattie, and Bresnahan (BBB) scores and motor evoked potentials (MEPs) were measured, and all rats underwent biotin dextran-amine (BDA) tracing of the corticospinal tract (CST). The levels of expression of neural stem cell proliferation related proteins, including BrdU, nestin, Tuj1, Ng2+ and GFAP, were measured, and the levels of bFGF and EGF determined by Western blotting. RESULTS BBB scores and MEPs were increased after rTMS and hUCB-MSC transplantation, while histologically determined SCI-induced neuron apoptosis was attenuated. The numbers of BDA-positive fibers and Brdu-, nestin- and Tuj1-positive cells were markedly increased and the numbers of Ng2+- and GFAP-positive cells were markedly decreased following treatment with rTMS alone or rTMS plus hUCB-MSC transplantation. The levels of expression of bFGF and EGF were significantly upregulated following rTMS treatment and hUCB-MSC transplantation. Higher performance was observed after combined treatment with rTMS and hUCB-MSC transplantation than after either alone. CONCLUSIONS The combination of rTMS treatment and hUCB-MSC transplantation could attenuate SCI-induced neural stem cell apoptosis and motor dysfunction in rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。