BACKGROUND Following severe trauma, treatment of cutaneous injuries is often delayed by inadequate blood supply. The aim of the present study was to determine whether granulocyte-colony stimulating factor (G-CSF) protects endothelial cells (ECs) and enhances angiogenesis in a rat model of hemorrhagic shock (HS) combined with cutaneous injury after resuscitation. MATERIAL AND METHODS The HS rats with full-thickness defects were resuscitated and randomly divided into a G-CSF group (200 μg/kg body weight), a normal saline group, and a blank control group. Histological staining was to used estimate the recovery and apoptosis of skin. Apoptosis- and angiogenesis-related factors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot (WB). Scratch assay, tube formation, and WB experiments were performed to verify the functional effects of G-CSF on HUVECs in vitro. RESULTS H&E staining and Masson trichrome staining showed earlier inflammation resolution and collagen synthesis in the G-CSF-treated group. Angiogenesis-related factors were elevated at mRNA and protein levels. TUNEL staining suggested fewer apoptotic cells in the G-CSF group. The apoptotic-related factors were down-regulated and anti-apoptotic factors were up-regulated in the G-CSF-treated group. Scratch assay and tube formation experiments revealed that G-CSF facilitated migration ability and angiogenic potential of HUVECs. The angiogenic and anti-apoptotic effects were also enhanced in vitro. CONCLUSIONS Our results suggest that G-CSF after resuscitation attenuates local apoptosis and accelerates angiogenesis. These findings hold great promise for improving therapy for cutaneous injury in severe trauma and ischemia diseases.
Granulocyte-Colony Stimulating Factor (G-CSF) Accelerates Wound Healing in Hemorrhagic Shock Rats by Enhancing Angiogenesis and Attenuating Apoptosis.
粒细胞集落刺激因子(G-CSF)通过增强血管生成和减弱细胞凋亡来加速出血性休克大鼠的伤口愈合
阅读:4
作者:Huang Hong, Zhang Qi, Liu Jiejie, Hao Haojie, Jiang Chaoguang, Han Weidong
| 期刊: | Medical Science Monitor | 影响因子: | 2.100 |
| 时间: | 2017 | 起止号: | 2017 May 31; 23:2644-2653 |
| doi: | 10.12659/msm.904988 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
