The coexistence of stable limit cycles and chaotic attractors has already been observed in some 3D dynamical systems. In this paper we show, using the T-system, that unstable limit cycles and chaotic attractors can also coexist. Moreover, by completing the characterization of the existence of invariant algebraic surfaces and their associated global dynamics, we give a better understanding on the disappearance of the strange attractor and the limit cycles of the studied system.
Coexistence of chaotic attractor and unstable limit cycles in a 3D dynamical system.
三维动力系统中混沌吸引子与不稳定极限环的共存
阅读:7
作者:Constantinescu Dana, Tigan Gheorghe, Zhang Xiang
| 期刊: | Open Research Europe | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 May 17; 1:50 |
| doi: | 10.12688/openreseurope.13590.1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
