Ginkgo biloba Extract EGb761 Attenuates Bleomycin-Induced Experimental Pulmonary Fibrosis in Mice by Regulating the Balance of M1/M2 Macrophages and Nuclear Factor Kappa B (NF-κB)-Mediated Cellular Apoptosis.

银杏叶提取物 EGb761 通过调节 M1/M2 巨噬细胞的平衡和核因子 Kappa B (NF-κB) 介导的细胞凋亡来减轻博来霉素诱导的小鼠实验性肺纤维化

阅读:4
作者:Pan Ling, Lu Yuehong, Li Zhanhua, Tan Yuping, Yang Hongmei, Ruan Ping, Li Ruixiang
BACKGROUND The aim of this study was to show whether the standardized Ginkgo biloba extract EGb761, a traditional Chinese medicine, has a therapeutic effect on pulmonary fibrosis (PF). MATERIAL AND METHODS Bleomycin (BLM) was used for establishing the PF mouse model. The mice were treated with a gradient of EGb761 for 28 days to determine an appropriate drug dose. On day 28, the effect of EGb761 on lung injury and inflammation was confirmed by hematoxylin and eosin and Masson staining and evaluated by pulmonary alveolitis and Ashcroft score. The balance of M1/M2 macrophages was evaluated with the respective markers inducible nitric oxide synthase and and interleukin-10 by real-time polymerase chain reaction. Furthermore, the expressions of fibrosis-associated protein alpha-smooth muscle actin (SMA), related inflammatory protein transforming growth factor (TGF)-ß1, the apoptosis-related proteins B-cell lymphoma-associated X protein (Bax), B-cell lymphoma (Bcl)-2, caspase-3, caspase-9, and phosphorylated nuclear factor (NF)-kappaB (p65) were assessed by western blot. RESULTS On day 28, PF was induced by treating with BLM, whereas EGb761 suppressed the PF of lung tissue. The BLM-induced imbalance of M1/M2 macrophages was reduced by EGb761. Furthermore, the increasing amounts of alpha-SMA and TGF-ß1 induced by BLM were suppressed by EGb761. In addition, the protein or messenger ribonucleic acid expression levels of phosphorylated NF-kappaB (p65), caspase-3, and caspase-9 were upregulated, whereas Bax and Bcl-2 were downregulated. Treatment with EGb761 restored the levels of these proteins except for caspase-9. CONCLUSIONS This study illustrated the protective effect of EGb761 on BLM-induced PF by regulating the balance of M1/M2 macrophages and NF-kappaB (p65)-mediated apoptosis. The results demonstrated the potential clinical therapeutic effect of EGb761, providing a novel possibility for curing PF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。