MicroRNA-744 Inhibits Proliferation of Bronchial Epithelial Cells by Regulating Smad3 Pathway via Targeting Transforming Growth Factor-β1 (TGF-β1) in Severe Asthma.

MicroRNA-744 通过靶向转化生长因子-β1 (TGF-β1) 调节 Smad3 通路来抑制重度哮喘中支气管上皮细胞的增殖

阅读:4
作者:Huang Han, Lu Hongxia, Liang Lihong, Zhi Yueli, Huo Beibei, Wu Linlin, Xu Liping, Shen Zhaobo
BACKGROUND Bronchial epithelial cells proliferation plays a pivotal role in airway remodeling in children with severe asthma. MicroRNAs (miRNAs) have gained great attention for many diseases, including asthma. The purpose of this study was to explore the mechanisms that underlie miR-744 modulating bronchial epithelial cells proliferation in severe asthma in children. MATERIAL AND METHODS Bronchial epithelial cells were isolated from bronchial biopsies of normal controls and asthmatic subjects. miR-744 and transforming growth factor-ß1 (TGF-ß1) expressions were measured by quantitative reverse transcription PCR (qRT-PCR). Proliferating cell nuclear antigen (PCNA), phosphorylation or total of mothers against decapentaplegic homolog3 (Smad3) and production of Smad anchor for receptor activation (SARA) were measured via Western blot analysis. A link between miR-744 and TGF-ß1 was probed by luciferase activity and RNA immunoprecipitation. Cell proliferation was evaluated using the Cell Proliferation Assay Kit. RESULTS Severe asthma showed a significantly elevated cell proliferation rate and reduced abundance of miR-744, which in turn inhibited cell proliferation of bronchial epithelial cells. In particular, TGF-ß1 might be a candidate target of miR-744, and enrichment of miR-744 lowered the expression of TGF-ß1 at mRNA and protein levels. Indeed, overexpression of miR-744 lowered the proliferation rate of bronchial epithelial cells via driving TGF-ß1. Moreover, addition of miR-744 limited phosphorylation of Smad3 but reversed SARA protein abundance by regulating TGF-ß1. CONCLUSIONS The presence of miR-744 repressed bronchial epithelial cells proliferation through mediating the Smad3 pathway by modulating TGF-ß1, providing a promising therapeutic approach for epithelial function in severe asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。