TERRA increases at short telomeres in yeast survivors and regulates survivor associated senescence (SAS).

TERRA 在酵母存活细胞的短端粒处增加,并调节与存活细胞相关的衰老 (SAS)

阅读:5
作者:Misino Stefano, Busch Anke, Wagner Carolin B, Bento Fabio, Luke Brian
Cancer cells achieve immortality by employing either homology-directed repair (HDR) or the telomerase enzyme to maintain telomeres. ALT (alternative lengthening of telomeres) refers to the subset of cancer cells that employ HDR. Many ALT features are conserved from yeast to human cells, with the yeast equivalent being referred to as survivors. The non-coding RNA TERRA, and its ability to form RNA-DNA hybrids, has been implicated in ALT/survivor maintenance by promoting HDR. It is not understood which telomeres in ALT/survivors engage in HDR, nor is it clear which telomeres upregulate TERRA. Using yeast survivors as a model for ALT, we demonstrate that HDR only occurs at telomeres when they become critically short. Moreover, TERRA levels steadily increase as telomeres shorten and decrease again following HDR-mediated recombination. We observe that survivors undergo cycles of senescence, in a similar manner to non-survivors following telomerase loss, which we refer to as survivor associated senescence (SAS). Similar to 'normal' senescence, we report that RNA-DNA hybrids slow the rate of SAS, likely through the elongation of critically short telomeres, however decreasing the rate of telomere shortening may contribute to this effect. In summary, TERRA RNA-DNA hybrids regulate telomere dysfunction-induced senescence before and after survivor formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。