Dynamics of a rolling robot.

滚动机器人的动力学

阅读:10
作者:Ilin K I, Moffatt H K, Vladimirov V A
Equations describing the rolling of a spherical ball on a horizontal surface are obtained, the motion being activated by an internal rotor driven by a battery mechanism. The rotor is modeled as a point mass mounted inside a spherical shell and caused to move in a prescribed circular orbit relative to the shell. The system is described in terms of four independent dimensionless parameters. The equations governing the angular momentum of the ball relative to the point of contact with the plane constitute a six-dimensional, nonholonomic, nonautonomous dynamical system with cubic nonlinearity. This system is decoupled from a subsidiary system that describes the trajectories of the center of the ball. Numerical integration of these equations for prescribed values of the parameters and initial conditions reveals a tendency toward chaotic behavior as the radius of the circular orbit of the point mass increases (other parameters being held constant). It is further shown that there is a range of values of the initial angular velocity of the shell for which chaotic trajectories are realized while contact between the shell and the plane is maintained. The predicted behavior has been observed in our experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。