Targeted DNA double-strand breaks (DSBs) with CRISPR-Cas9 have revolutionized genetic modification by enabling efficient genome editing in a broad range of eukaryotic systems. Accurate gene editing is possible with near-perfect efficiency in haploid or (predominantly) homozygous genomes. However, genomes exhibiting polyploidy and/or high degrees of heterozygosity are less amenable to genetic modification. Here, we report an up to 99-fold lower gene editing efficiency when editing individual heterozygous loci in the yeast genome. Moreover, Cas9-mediated introduction of a DSB resulted in large scale loss of heterozygosity affecting DNA regions up to 360 kb and up to 1700 heterozygous nucleotides, due to replacement of sequences on the targeted chromosome by corresponding sequences from its non-targeted homolog. The observed patterns of loss of heterozygosity were consistent with homology directed repair. The extent and frequency of loss of heterozygosity represent a novel mutagenic side-effect of Cas9-mediated genome editing, which would have to be taken into account in eukaryotic gene editing. In addition to contributing to the limited genetic amenability of heterozygous yeasts, Cas9-mediated loss of heterozygosity could be particularly deleterious for human gene therapy, as loss of heterozygous functional copies of anti-proliferative and pro-apoptotic genes is a known path to cancer.
Allele-specific genome editing using CRISPR-Cas9 is associated with loss of heterozygosity in diploid yeast.
利用 CRISPR-Cas9 进行等位基因特异性基因组编辑与二倍体酵母杂合性的丧失有关
阅读:6
作者:Gorter de Vries Arthur R, Couwenberg Lucas G F, van den Broek Marcel, de la Torre Cortés Pilar, Ter Horst Jolanda, Pronk Jack T, Daran Jean-Marc G
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2019 | 起止号: | 2019 Feb 20; 47(3):1362-1372 |
| doi: | 10.1093/nar/gky1216 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
