Advanced battery management system enhancement using IoT and ML for predicting remaining useful life in Li-ion batteries.

利用物联网和机器学习技术增强先进的电池管理系统,以预测锂离子电池的剩余使用寿命

阅读:3
作者:Krishna Gopal, Singh Rajesh, Gehlot Anita, Almogren Ahmad, Altameem Ayman, Ur Rehman Ateeq, Hussen Seada
This study highlights the increasing demand for battery-operated applications, particularly electric vehicles (EVs), necessitating the development of more efficient Battery Management Systems (BMS), particularly lithium-ion (Li-ion) batteries used in energy storage systems (ESS). This research addresses some of the key limitations of current BMS technologies, with a focus on accurately predicting the remaining useful life (RUL) of batteries, which is a critical factor for ensuring operational efficiency and sustainability. Real-time data are collected from sensors via an Internet of Things (IoT) device and processed using Arduino Nano, which extracts values for input into a Long Short-Term Memory (LSTM) model. This model employs the National Aeronautics and Space Administration (NASA) Li-battery dataset and current, voltage temperature, and cycle values to predict the battery RUL. The proposed model demonstrates significant forecasting precision, attaining a root mean square error (RMSE) of 0.01173, outperforming all comparative models. This improvement facilitates more effective decision-making in BMS, particularly in resource allocation and adaptability to transient conditions. However, the practical implementation of real-time data acquisition systems at a scale and across diverse environments remains challenging. Future research will focus on enhancing the generalizability of the model, expanding its applicability to broader datasets, and automating data ingestion to minimize integration challenges. These advancements are aimed at improving energy efficiency in both industrial and residential applications in accordance with the Sustainable Development Goals (SDGs) of the UN.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。