A three-port circulator for optical communication systems comprising a photonic crystal slab made of a magneto-optical material in which an magnetizing element is not required to keep its magnetic domains aligned is suggested for the first time. By maximizing the incorporation of europium to its molecular formula, the magneto-optical material can remain in the saturated magnetic state even in the absence of an external DC magnetic field. Two- and three-dimensional simulations of the device performed with full-wave electromagnetic solvers based on the finite element method demonstrate that, at the 1550 nm wavelength, the insertion loss, isolation, and reflection levels are equal to or better than -1 dB, -14 dB, and -20 dB, respectively. Since its operation does not require an electromagnet or a permanent magnet, the suggested circulator is much more compact, being able to reach footprints in the range of three orders of magnitude smaller, when compared to other circulator designs referred to in the literature and the presented results can be useful for the design of other nonreciprocal devices with reduced dimensions for optical communication systems.
Magnetless Optical Circulator Based on an Iron Garnet with Reduced Magnetization Saturation.
基于降低磁化饱和度的铁石榴石的无磁光环形器
阅读:3
作者:Portela Gianni, Levy Miguel, Hernandez-Figueroa Hugo E
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2021 | 起止号: | 2021 Aug 3; 26(15):4692 |
| doi: | 10.3390/molecules26154692 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
