3D-printed magnesium/strontium-co-doped calcium silicate scaffolds promote angiogenesis and bone regeneration through synergistic bioactive ion stimulation.

3D打印的镁/锶共掺杂硅酸钙支架通过协同生物活性离子刺激促进血管生成和骨再生

阅读:7
作者:Ho Chia-Che, Hsu Tuan-Ti, Chiu Yung-Cheng, Lin Yen-Hong, Xie Pei-Cheng, Wang Chen-Ying
Bone defects resulting from trauma, infection, or surgical resection require biomaterials that support osteogenesis and vascularization for effective regeneration. In this study, we developed a 3D-printed magnesium- and strontium-co-doped calcium silicate (MSCS) scaffold using direct ink writing to optimize its bioactivity and structural integrity. X-ray diffraction confirmed the successful incorporation of Sr and Mg, leading to phase modifications that influenced ion release and degradation. Wettability and mechanical testing showed that Sr improved the stability, while Mg accelerated degradation, with M5S5 co-doping exhibiting a balanced degradation profile. In vitro, Wharton's jelly mesenchymal stromal cells cultured on M5S5 scaffolds displayed enhanced proliferation, cytoskeletal organization, and osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and bone matrix protein expression. Angiogenesis assays using human umbilical vein endothelial cells revealed that Sr and Mg co-doping synergistically enhanced vascular endothelial growth factor and angiopoietin-1 secretion, thereby promoting endothelial tube formation. In vivo micro-computed tomography and histological analysis of a rabbit femoral defect model confirmed that M5S5 facilitated extensive new bone formation, exhibiting superior trabecular architecture and mineralization. These findings highlight MSCS scaffolds as promising biomaterials for bone tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。