Quickly developing precision medicine and patient-oriented treatment strategies urgently require novel technological solutions. The randomly cell-populated scaffolds usually used for tissue engineering often fail to mimic the highly anisotropic characteristics of native tissue. In this work, an ultrasound standing-wave-based tissue engineering acoustophoretic (TEA) set-up was developed to organize murine mesenchymal stromal cells (mMSCs) in an in situ polymerizing 3-D fibrin hydrogel. The resultant constructs, consisting of 17 cell layers spaced at 300 µm, were obtained by continuous wave ultrasound applied at a 2.5 MHz frequency. The patterned mMSCs preserved the structured behavior within 10 days of culturing in osteogenic conditions. Cell viability was moderately increased 1 day after the patterning; it subdued and evened out, with the cells randomly encapsulated in hydrogels, within 21 days of culturing. Cells in the structured hydrogels exhibited enhanced expression of certain osteogenic markers, i.e., Runt-related transcription factor 2 (RUNX2), osterix (Osx) transcription factor, collagen-1 alpha1 (COL1A1), osteopontin (OPN), osteocalcin (OCN), and osteonectin (ON), as well as of certain cell-cycle-progression-associated genes, i.e., Cyclin D1, cysteine-rich angiogenic inducer 61 (CYR61), and anillin (ANLN), when cultured with osteogenic supplements and, for ANLN, also in the expansion media. Additionally, OPN expression was also augmented on day 5 in the patterned gels cultured without the osteoinductive media, suggesting the pro-osteogenic influence of the patterned cell organization. The TEA set-up proposes a novel method for non-invasively organizing cells in a 3-D environment, potentially enhancing the regenerative properties of the designed anisotropic constructs for bone healing.
A Tissue Engineering Acoustophoretic (TEA) Set-up for the Enhanced Osteogenic Differentiation of Murine Mesenchymal Stromal Cells (mMSCs).
用于增强小鼠间充质干细胞(mMSCs)成骨分化的组织工程声泳(TEA)装置
阅读:5
作者:Zhang Hui, Beilfuss Nirina, Zabarylo Urszula, Raum Kay, Puts Regina
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Sep 29; 23(19):11473 |
| doi: | 10.3390/ijms231911473 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
