In vivo microstructural white matter changes in early spinocerebellar ataxia 2.

早期脊髓小脑性共济失调 2 型患者的体内白质微观结构变化

阅读:5
作者:Stezin Albert, Bhardwaj Sujas, Khokhar Sunil, Hegde Shantala, Jain Sanjeev, Bharath Rose Dawn, Saini Jitender, Pal Pramod Kumar
OBJECTIVE: White matter (WM) integrity of Spinocerebellar ataxia 2 (SCA2) is poorly understood, more so in the early stages of SCA2. In this study, we evaluated the microstructural integrity of the WM tracts with an emphasis on the nature of in vivo pathological involvement in early SCA2. MATERIALS AND METHODS: We evaluated the MRI images of 26 genetically proven SCA2 patients with disease duration <5 years and 24 age- and gender-matched healthy controls using tract-based spatial statistics (TBSS) to identify the WM tract changes and their clinico-genetic correlates (age at onset, duration of disease, ataxia severity and CAG repeat length) using standard methodology. RESULTS: The mean age at onset and duration of disease were 28.7 ± 8.51 years and 3.5 ± 0.69 months, respectively. The mean CAG repeat length was 42.5 ± 4.6, and the ataxia severity score was 16.1 ± 4.9. Altered DTI scalars signifying degeneration was present in the bilateral anterior thalamic radiation (ATR), corticospinal tract (CST), inferior fronto-occipital fasciculus (IFOF), superior and inferior longitudinal fasciculus (SLF and ILF), uncinate fasciculus (UF), cingulum, corpus callosum (CC), forceps major and forceps minor (corrected p < .05). DTI scalars representing demyelination was seen in the superior cerebellar peduncle (SCP) and cerebellar WM. There was a significant correlation of SARA score with axial diffusivity of the bilateral cingulum, ATR, CST, forceps minor, IFOF, ILF, SLF and SCP on the right side (corrected p < .05). CONCLUSION: Extensive WM involvement is present in early SCA2. The DTI scalars indicate degeneration and demyelination and may have clinical implications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。