Recently developed methods in mechanically guided assembly provide deterministic access to wide-ranging classes of complex, 3D structures in high-performance functional materials, with characteristic length scales that can range from nanometers to centimeters. These processes exploit stress relaxation in prestretched elastomeric platforms to affect transformation of 2D precursors into 3D shapes by in- and out-of-plane translational displacements. This paper introduces a scheme for introducing local twisting deformations into this process, thereby providing access to 3D mesostructures that have strong, local levels of chirality and other previously inaccessible geometrical features. Here, elastomeric assembly platforms segmented into interconnected, rotatable units generate in-plane torques imposed through bonding sites at engineered locations across the 2D precursors during the process of stress relaxation. Nearly 2 dozen examples illustrate the ideas through a diverse variety of 3D structures, including those with designs inspired by the ancient arts of origami/kirigami and with layouts that can morph into different shapes. A mechanically tunable, multilayered chiral 3D metamaterial configured for operation in the terahertz regime serves as an application example guided by finite-element analysis and electromagnetic modeling.
Buckling and twisting of advanced materials into morphable 3D mesostructures.
先进材料的弯曲和扭曲,使其形成可变形的三维介观结构
阅读:7
作者:Zhao Hangbo, Li Kan, Han Mengdi, Zhu Feng, Vázquez-Guardado Abraham, Guo Peijun, Xie Zhaoqian, Park Yoonseok, Chen Lin, Wang Xueju, Luan Haiwen, Yang Yiyuan, Wang Heling, Liang Cunman, Xue Yeguang, Schaller Richard D, Chanda Debashis, Huang Yonggang, Zhang Yihui, Rogers John A
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2019 | 起止号: | 2019 Jul 2; 116(27):13239-13248 |
| doi: | 10.1073/pnas.1901193116 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
