Q-space truncation and sampling in diffusion spectrum imaging.

扩散谱成像中的Q空间截断和采样

阅读:12
作者:Tian Qiyuan, Rokem Ariel, Folkerth Rebecca D, Nummenmaa Aapo, Fan Qiuyun, Edlow Brian L, McNab Jennifer A
PURPOSE: To characterize the q-space truncation and sampling on the spin-displacement probability density function (PDF) in diffusion spectrum imaging (DSI). METHODS: DSI data were acquired using the MGH-USC connectome scanner (G(max)  = 300 mT/m) with b(max)  = 30,000 s/mm(2) , 17 × 17 × 17, 15 × 15 × 15 and 11 × 11 × 11 grids in ex vivo human brains and b(max)  = 10,000 s/mm(2) , 11 × 11 × 11 grid in vivo. An additional in vivo scan using b(max) =7,000 s/mm(2) , 11 × 11 × 11 grid was performed with a derated gradient strength of 40 mT/m. PDFs and orientation distribution functions (ODFs) were reconstructed with different q-space filtering and PDF integration lengths, and from down-sampled data by factors of two and three. RESULTS: Both ex vivo and in vivo data showed Gibbs ringing in PDFs, which becomes the main source of artifact in the subsequently reconstructed ODFs. For down-sampled data, PDFs interfere with the first replicas or their ringing, leading to obscured orientations in ODFs. CONCLUSION: The minimum required q-space sampling density corresponds to a field-of-view approximately equal to twice the mean displacement distance (MDD) of the tissue. The 11 × 11 × 11 grid is suitable for both ex vivo and in vivo DSI experiments. To minimize the effects of Gibbs ringing, ODFs should be reconstructed from unfiltered q-space data with the integration length over the PDF constrained to around the MDD. Magn Reson Med 76:1750-1763, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。