A Neural Machine Translation Model for Arabic Dialects That Utilises Multitask Learning (MTL).

利用多任务学习(MTL)的阿拉伯语方言神经机器翻译模型

阅读:4
作者:Baniata Laith H, Park Seyoung, Park Seong-Bae
In this research article, we study the problem of employing a neural machine translation model to translate Arabic dialects to modern standard Arabic. The proposed solution of the neural machine translation model is prompted by the recurrent neural network-based encoder-decoder neural machine translation model that has been proposed recently, which generalizes machine translation as sequence learning problems. We propose the development of a multiytask learning (MTL) model which shares one decoder among language pairs, and every source language has a separate encoder. The proposed model can be applied to limited volumes of data as well as extensive amounts of data. Experiments carried out have shown that the proposed MTL model can ensure a higher quality of translation when compared to the individually learned model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。