Homeostasis of the mammalian intestinal epithelium is tightly regulated by multiple factors, including cellular polyamines, but the exact mechanism underlying polyamines in this process remains largely unknown. Mitochondria are the powerhouse of cells and can also function as signaling organelles by releasing metabolic by-products. Here, we determined whether polyamines regulate intestinal epithelial renewal and wound healing by altering mitochondrial activity. Depletion of cellular polyamines by inhibiting ornithine decarboxylase with α-difluoromethylornithine (DFMO) resulted in mitochondrial dysfunction as evidenced by decreases in basal and maximal respiration levels, ATP production, and spare respiration capacity. Polyamine depletion by DFMO also decreased the levels of mitochondria-associated proteins prohibitin 1 and COX-IV. Mitochondrial dysfunction induced by DFMO was associated with an inhibition of intestinal organoid growth and epithelial repair after wounding, and this inhibition was ameliorated by administration of the mitochondrial activator Mito-Tempo or exogenous polyamine putrescine. These results indicate that polyamines are necessary for mitochondrial metabolism, in turn, controlling constant intestinal mucosal growth and epithelial repair after acute injury. NEW & NOTEWORTHY Our results indicate that polyamines are required for maintaining mitochondrial integrity in intestinal epithelial cells. Polyamine depletion led to mitochondrial dysfunction, along with an inhibition of intestinal epithelial renewal and delayed wound healing. Reinforcing mitochondrial activity by Mito-Tempo ameliorated reduced epithelial renewal and delayed healing in polyamine-deficient cells, demonstrating the importance of mitochondrial metabolism in polyamine-regulated mucosal growth and repair after injury.
Polyamines regulate mitochondrial metabolism essential for intestinal epithelial renewal and wound healing.
多胺调节线粒体代谢,对肠道上皮细胞更新和伤口愈合至关重要
阅读:21
作者:Cairns Cassandra A, Chen Ting, Han Naomi, Chen Hongxia, Chung Hee K, Xiao Lan, Wang Jian-Ying
| 期刊: | American Journal of Physiology-Gastrointestinal and Liver Physiology | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 329(1):G191-G200 |
| doi: | 10.1152/ajpgi.00023.2025 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
