As network intrusion behaviors become increasingly complex, traditional intrusion detection systems face limitations, especially with data imbalance. To address this, we introduce the Nash equilibrium concept from game theory into classifier ensemble optimization, enhancing robustness in multi-class classification tasks. Additionally, we propose a network intrusion detection system based on a Conditional Generative Adversarial Network with Conditional Aggregation Encoder-Decoder Structure (CE-GAN) with a conditional aggregation encoder-decoder structure to mitigate data imbalance and improve classifier performance. The model incorporates a composite loss function to maintain both the authenticity and diversity of generated samples. Experiments on the NSL-KDD and UNSW-NB15 datasets show that CE-GAN effectively augments rare data samples, significantly improving classification metrics for imbalanced datasets, thus providing a superior solution to this challenge in network intrusion detection.
A CE-GAN based approach to address data imbalance in network intrusion detection systems.
一种基于 CE-GAN 的方法来解决网络入侵检测系统中的数据不平衡问题
阅读:5
作者:Yang Yang, Liu Xiaoyan, Wang Dianli, Sui Qingru, Yang Chao, Li Hengxu, Li Yifeng, Luan Tianyun
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 6; 15(1):7916 |
| doi: | 10.1038/s41598-025-90815-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
