Conformal Radiation-Type Programmable Metasurface for Agile Millimeter-Wave Orbital Angular Momentum Generation.

用于敏捷毫米波轨道角动量生成的共形辐射型可编程超表面

阅读:4
作者:Cao Anjie, Ni Tao, Chen Yuhua, Wang Longpan, Li Zhenfei, Bai Xudong, Zhang Fuli, Chen Zhansheng
Since the scarcity of bandwidth resources has become increasingly critical in modern communication systems, orbital angular momentum (OAM) with a higher degree of freedom in information modulation has become a promising solution to alleviate the shortage of spectrum resources. Consequently, the integration of OAM with millimeter-wave technology has emerged as a focal point in next-generation communication research. Recently, programmable metasurfaces have gained considerable attention as essential devices for OAM generation due to real-time tunability, but their profiles are relatively high as a result of the external feed source. This paper proposes a conformal radiation-type programmable metasurface operating in the millimeter-wave band. By employing a series-parallel hybrid feed network to replace conventional external feed sources, the overall profile of the metasurface system can be reduced to less than 0.1λ. Furthermore, the proposed innovation design could also achieve a conformal cross-shaped architecture, which is ultraportable and very effective in integrating with the front ends of satellites or aircraft and eliminating issues such as feed source blockage as well as energy spillover losses in conventional metasurfaces. The proposed metasurface could achieve a realized gain of 22.54 dB with an aperture efficiency of 21.75%, thus generating high-purity OAM waves with topological charges of l = 0, l = +1, l = +2, and l = +3. Additionally, by incorporating beam scanning techniques, OAM waves could be deflected to accommodate scenarios with moving receivers, demonstrating substantial potential for future high-speed wireless communication applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。