The mechanical effects of CRT promoting autophagy via mitochondrial calcium uniporter down-regulation and mitochondrial dynamics alteration.

CRT 的机械效应通过线粒体钙单向转运蛋白下调和线粒体动力学改变促进自噬

阅读:4
作者:Yu Ziqing, Gong Xue, Yu Yong, Li Minghui, Liang Yixiu, Qin Shengmei, Fulati Zibire, Zhou Nianwei, Shu Xianhong, Nie Zhenning, Dai Shimo, Chen Xueying, Wang Jingfeng, Chen Ruizhen, Su Yangang, Ge Junbo
The mechanism of cardiac resynchronization therapy (CRT) remains unclear. In this study, mitochondria calcium uniporter (MCU), dynamin-related protein-1 (DNM1L/Drp1) and their relationship with autophagy in heart failure (HF) and CRT are investigated. Thirteen male beagle's dogs were divided into three groups (sham, HF, CRT). Animals received left bundle branch (LBB) ablation followed by either 8-week rapid atrial pacing or 4-week rapid atrial pacing and 4-week biventricular pacing. Cardiac function was evaluated by echocardiography. Differentially expressed genes (DEGs) were detected by microarray analysis. General morphological changes, mitochondrial ultrastructure, autophagosomes and mitophagosomes were investigated. The cardiomyocyte stretching was adopted to imitate the mechanical effect of CRT. Cells were divided into three groups (control, angiotensin-II and angiotensin-II + stretching). MCU, DNM1L/Drp1 and autophagy markers were detected by western blots or immunofluorescence. In the present study, CRT could correct cardiac dysfunction, decrease cardiomyocyte's size, alleviate cardiac fibrosis, promote the formation of autophagosome and mitigate mitochondrial injury. CRT significantly influenced gene expression profile, especially down-regulating MCU and up-regulating DNM1L/Drp1. Cell stretching reversed the angiotensin-II induced changes of MCU and DNM1L/Drp1 and partly restored autophagy. CRT's mechanical effects down-regulated MCU, up-regulated DNM1L/Drp1 and subsequently enhanced autophagy. Besides, the mechanical stretching prevented the angiotensin-II-induced cellular enlargement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。