Ceftazidime retains in vivo efficacy against strains of Stenotrophomonas maltophilia for which traditional testing predicts resistance.

头孢他啶对传统检测预测会产生耐药性的嗜麦芽窄食单胞菌菌株仍具有体内疗效

阅读:5
作者:Phillips Matthew C, Lee Bosul, Miller Sarah L, Yan Jun, Goy Kristine, Maeusli Marlène, Lam Tina, Spellberg Catherine, Spellberg Michael, She Rosemary, Spellberg Brad, Luna Brian
Stenotrophomonas maltophilia is responsible for a growing number of nosocomial infections and is difficult to treat owing to limited antibiotic susceptibilities. However, there are numerous recently published examples where traditional susceptibility testing methodology fails to accurately predict in vivo efficacy. We sought to determine if there were efficacious antibiotics against S. maltophilia that have been overlooked due to specious in vivo resistance determined by traditional in vitro methods. Antibiotic resistance testing was performed utilizing conventional and nutrient-limited media. Antibiotics with discordant minimum inhibitory concentrations (MICs) between the two media were selected for further experimentation. Metal ions were supplemented back into the nutrient-limited media to establish possible mechanisms. In vivo corroborations of in vitro MICs were done utilizing two infection models, Galleria mellonella and a neutropenic mouse oral aspiration pneumonia model. S. maltophilia MICs were significantly lower for ceftazidime in nutritionally deficient media that better corresponds to the in vivo environment than conventional rich media, resulting in a high percentage of strains determined resistant in traditional media being determined susceptible in nutritionally deficient media. The addition of zinc and manganese to the deficient media abrogated this difference, which was dependent on the L1 metallo-β-lactamase (MBL). Ceftazidime protected both G. mellonella and neutropenic mice against lethal infection caused by S. maltophilia that was predicted to be resistant in traditional media but susceptible in nutrient-deficient media. Ceftazidime may remain a viable therapeutic option for patients with S. maltophilia infection caused by strains predicted to be resistant by traditional susceptibility testing. Sequestration of trace metals in the host environment may prevent S. maltophilia MBL activity against ceftazidime.IMPORTANCEBreakpoint interpretation criteria for ceftazidime against S. maltophilia were recently removed by CLSI and the FDA. It was noted that clinical data were insufficient to validate the current breakpoints. Clinical data were mixed, with some studies reporting treatment success, but others reporting treatment failure. We believe that antimicrobial testing is suboptimal, and improved testing strategies, such as the use of zinc-limited media for culture, will better model the activity of ceftazidime in vitro. Improved susceptibility testing strategies may better discriminate against those isolates that are truly resistant from those that were previously falsely identified as being resistant using conventional testing methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。