BACKGROUND: Liver transplantation is the most effective treatment for end-stage liver disease. However, the shortage of donor livers has become a significant obstacle to the advancement of liver transplantation. Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been extensively investigated in liver diseases. However, the underlying mechanisms of how they can protect organ donation after cardiac death (DCD) livers remain unclear. METHODS: In this study, an arterialized mouse non-heart-beating (NHB) liver transplantation model was used to investigate the effect of MSCs-Exo on NHB liver transplantation. The survival rates, histology, pro-inflammatory cytokine and chemokine expression, and underlying mechanisms were investigated. RESULTS: The infusion of MSCs-Exo reduced the injury to DCD liver graft tissue. In vitro and in vivo experiments demonstrated that MSCs-Exo could inhibit hydrogen peroxide-induced pyroptosis of Kupffer cells. We found that miR-17-5p was significantly abundant in MSCs-Exo, targeting and regulating the TXNIP expression. This action inhibited NLRP3-mediated pyroptosis of Kupffer cells through the classical Caspase1-dependent pathway, alleviating DCD liver graft injury. CONCLUSION: Our study elucidated a protective role for MSCs-Exo in a NHB liver transplantation model. This mechanism provides a theoretical basis and new strategies for the clinical application of MSCs-Exo to improve liver graft quality and alleviate the organ shortage in liver transplantation.
Mesenchymal stem cells-derived exosomes attenuate mouse non-heart-beating liver transplantation through Mir-17-5p-regulated Kupffer cell pyroptosis.
间充质干细胞衍生的外泌体通过 Mir-17-5p 调节的库普弗细胞焦亡减弱小鼠非心脏跳动肝移植
阅读:7
作者:Tian Yang, Jin Ming, Ye Nanwei, Gao Zhenzhen, Jiang Yuancong, Yan Sheng
| 期刊: | Stem Cell Research & Therapy | 影响因子: | 7.300 |
| 时间: | 2025 | 起止号: | 2025 Feb 7; 16(1):57 |
| doi: | 10.1186/s13287-025-04169-w | 种属: | Mouse |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
