Sub-THz and THz Cherenkov radiation source with two-dimensional periodic surface lattice and multistage depressed collector.

具有二维周期表面晶格和多级凹陷收集器的亚太赫兹和太赫兹切伦科夫辐射源

阅读:5
作者:MacLachlan Amy J, Zhang Liang, Konoplev Ivan V, Phelps Alan D R, Robertson Craig W, MacInnes Philip, Whyte Colin G, Ronald Kevin, Cross Adrian W, Henderson Mark A
We present the theory, concept and design of an efficient, megawatt coherent Cherenkov radiation source based on a two-dimensional periodic surface lattice (2D-PSL) cavity combined with a novel energy recovery system for the generation of highly efficient (> 50%) single-frequency radiation. We demonstrate the scalability of the transverse dimension of the 2D-PSL cavity of the Cherenkov source and thus the potential for efficient, continuous-wave, high-power (> 1 MW) operation; fundamental to the eventual realization of clean, fusion energy. These new sources, with the capacity to operate in the 0.1-10THz range, hold strong promise to address the long-standing "Terahertz gap". By combining a Cherenkov oscillator driven by a non-gyrating beam with an innovative four-stage depressed collector energy recovery system, the overall device efficiency can be increased to be competitive with gyrotrons in the requirements for heating and current drive in fusion plasma. In these Cherenkov devices, the frequency independence of the magnetic guide field enables advantageous frequency scaling without deployment constraints, making them especially attractive for high-impact applications in fusion science, turbulence diagnostics, non-destructive testing and biochemical spectroscopy. The novel energy recovery techniques presented in this paper have broad applicability to many electron-beam driven devices, bringing revolutionary potential to future THz source technologies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。