Organs collaborate to maintain metabolic homeostasis in mammals. Spatial metabolomics makes strides in profiling the metabolic landscape, yet can not directly inspect the metabolic crosstalk between tissues. Here, we introduce an approach to comprehensively trace the metabolic fate of (13)C-nutrients within the body and present a robust computational tool, MSITracer, to deep-probe metabolic activity in a spatial manner. By discerning spatial distribution differences between isotopically labeled metabolites from ambient mass spectrometry imaging-based isotope tracing data, this approach empowers us to characterize fatty acid metabolic crosstalk between the liver and heart, as well as glutamine metabolic exchange across the kidney, liver, and brain. Moreover, we disclose that tumor burden significantly influences the host's hexosamine biosynthesis pathway, and that the glucose-derived glutamine released from the lung as a potential source for tumor glutamate synthesis. The developed approach facilitates the systematic characterization of metabolic activity in situ and the interpretation of tissue metabolic communications in living organisms.
Spatial isotope deep tracing deciphers inter-tissue metabolic crosstalk.
空间同位素深度示踪技术揭示组织间代谢串扰
阅读:4
作者:Li Xinzhu, Zhu Ying, Li Ting, Tu Xinyi, Zhu Shiyu, Wang Lingzhi, Li Fei, Sun Chenglong, Li Xin, Zhao Haiyi, Tang Tang, Zang Qingce, Zhang Ruiping, Abliz Zeper
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 26; 16(1):7934 |
| doi: | 10.1038/s41467-025-63243-2 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
