To investigate mitochondrial responses to repetitive stimulation, we measured changes in NADH fluorescence and mitochondrial membrane potential (Psi(m)) produced by trains of action potentials (50 Hz for 10-50 s) delivered to motor nerve terminals innervating external intercostal muscles. Stimulation produced a rapid decrease in NADH fluorescence and partial depolarization of Psi(m). These changes were blocked when Ca2+ was removed from the bath or when N-type Ca2+ channels were inhibited with omega-conotoxin GVIA, but were not blocked when bath Ca2+ was replaced by Sr2+, or when vesicular release was inhibited with botulinum toxin A. When stimulation stopped, NADH fluorescence and Psi(m) returned to baseline values much faster than mitochondrial [Ca2+]. In contrast to findings in other tissues, there was usually little or no poststimulation overshoot of NADH fluorescence. These findings suggest that the major change in motor terminal mitochondrial function brought about by repetitive stimulation is a rapid acceleration of electron transport chain (ETC) activity due to the Psi(m) depolarization produced by mitochondrial Ca2+ (or Sr2+) influx. After partial inhibition of complex I of the ETC with amytal, stimulation produced greater Psi(m) depolarization and a greater elevation of cytosolic [Ca2+]. These results suggest that the ability to accelerate ETC activity is important for normal mitochondrial sequestration of stimulation-induced Ca2+ loads.
Stimulation-induced changes in NADH fluorescence and mitochondrial membrane potential in lizard motor nerve terminals.
刺激引起的蜥蜴运动神经末梢 NADH 荧光和线粒体膜电位的变化
阅读:4
作者:Talbot Janet, Barrett John N, Barrett Ellen F, David Gavriel
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2007 | 起止号: | 2007 Mar 15; 579(Pt 3):783-98 |
| doi: | 10.1113/jphysiol.2006.126383 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
