Gain-of-function mutations in the transient receptor potential (TRP) cation channel subfamily C member 6 (TRPC6) gene and mutations in the NPHS2 gene encoding podocin result in nephrotic syndromes. The purpose of this study was to determine the functional significance of biochemical interactions between these proteins. We observed that gating of TRPC6 channels in podocytes is markedly mechanosensitive and can be activated by hyposmotic stretch or indentation of the plasma membrane. Stretch activation of cationic currents was blocked by small interfering RNA knockdown of TRPC6, as well as by SKF-96365 or micromolar La(3+). Stretch activation of podocyte TRPC6 persisted in the presence of inhibitors of phospholipase C (U-73122) and phospholipase A2 (ONO-RS-082). Robust stretch responses also persisted when recording electrodes contained guanosine 5'-O-(2-thiodiphosphate) at concentrations that completely suppressed responses to ANG II. Stretch responses were enhanced by cytochalasin D but were abolished by the peptide GsMTx4, suggesting that forces are transmitted to the channels through the plasma membrane. Podocin and TRPC6 interact at their respective COOH termini. Knockdown of podocin markedly increased stretch-evoked activation of TRPC6 but nearly abolished TRPC6 activation evoked by a diacylglycerol analog. These data suggest that podocin acts as a switch to determine the preferred mode of TRPC6 activation. They also suggest that podocin deficiencies will result in Ca(2+) overload in foot processes, as with gain-of-function mutations in the TRPC6 gene. Finally, they suggest that mechanical activation of TRP family channels and the preferred mode of TRP channel activation may depend on whether members of the stomatin/prohibitin family of hairpin loop proteins are present.
Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol.
足细胞蛋白对膜拉伸或二酰甘油诱发的足细胞 TRPC6 通道门控的相反作用
阅读:10
作者:Anderson Marc, Kim Eun Young, Hagmann Henning, Benzing Thomas, Dryer Stuart E
| 期刊: | American Journal of Physiology-Cell Physiology | 影响因子: | 4.700 |
| 时间: | 2013 | 起止号: | 2013 Aug 1; 305(3):C276-89 |
| doi: | 10.1152/ajpcell.00095.2013 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
