Movement is executed through balanced excitation-inhibition in spinal motor circuits. Short-term perturbations in one type of neurotransmission are homeostatically counteracted by the opposing type, but prolonged excitation-inhibition imbalance causes dysfunction at both single neuron and circuit levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known. Here, we used functional, morphological, and viral-mediated approaches to uncover the pathogenic contribution of unbalanced excitation-inhibition in a mouse model of spinal muscular atrophy (SMA). We show that vulnerable SMA motor circuits fail to respond homeostatically to reduced excitation and instead increase inhibition. This imposes an excessive burden on motor neurons and further restricts their recruitment. Reducing inhibition genetically or pharmacologically improves neuronal function and motor behavior in SMA mice. Thus, the disruption of excitation-inhibition homeostasis is a major maladaptive mechanism that diminishes the capacity of premotor commands to recruit motor neurons and elicit muscle contractions in SMA.
Synaptic imbalance and increased inhibition impair motor function in SMA.
SMA患者的突触失衡和抑制增强会损害运动功能
阅读:7
作者:Fletcher Emily V, Chalif Joshua I, Rotterman Travis M, Pagiazitis John G, Van Alstyne Meaghan, Sivakumar Nandhini, Florez-Paz Danny, Rabinowitz Joseph E, Pellizzoni Livio, Alvarez Francisco J, Mentis George Z
| 期刊: | Science Advances | 影响因子: | 12.500 |
| 时间: | 2025 | 起止号: | 2025 Sep 5; 11(36):eadt4126 |
| doi: | 10.1126/sciadv.adt4126 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
