The 2 tetrodotoxin-resistant (TTXr) voltage-gated sodium channel subtypes Na V 1.8 and Na V 1.9 are important for peripheral pain signaling. As determinants of sensory neuron excitability, they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and the release of neurotransmitters from sensory neuron terminals. Na V 1.8 and Na V 1.9, which are encoded by SCN10A and SCN11A , respectively, are predominantly expressed in pain-sensitive (nociceptive) neurons localized in the dorsal root ganglia (DRG) along the spinal cord and in the trigeminal ganglia. Mutations in these genes cause various pain disorders in humans. Gain-of-function missense variants in SCN10A result in small fiber neuropathy, while distinct SCN11A mutations cause, i. a., congenital insensitivity to pain, episodic pain, painful neuropathy, and cold-induced pain. To determine the impact of loss-of-function of both channels, we generated Na V 1.8/Na V 1.9 double knockout (DKO) mice using clustered regularly interspaced short palindromic repeats/Cas-mediated gene editing to achieve simultaneous gene disruption. Successful knockout of both channels was verified by whole-cell recordings demonstrating the absence of Na V 1.8- and Na V 1.9-mediated Na + currents in Na V 1.8/Na V 1.9 DKO DRG neurons. Global RNA sequencing identified significant deregulation of C-LTMR marker genes as well as of pain-modulating neuropeptides in Na V 1.8/Na V 1.9 DKO DRG neurons, which fits to the overall only moderately impaired acute pain behavior observed in DKO mice. Besides addressing the function of both sodium channels in pain perception, we further demonstrate that the null-background is a very valuable tool for investigations on the functional properties of individual human disease-causing variants in Na V 1.8 or Na V 1.9 in their native physiological environment.
Na V 1.8/Na V 1.9 double deletion mildly affects acute pain responses in mice.
Na V 1.8/Na V 1.9 双缺失对小鼠的急性疼痛反应有轻微影响
阅读:13
作者:Alves-Simões Marta, Teege Laura, Tomni Cecilia, Lürkens Martha, Schmidt Annika, Iseppon Federico, Millet Queensta, Kühs Samuel, Katona Istvan, Weis Joachim, Heinemann Stefan H, Hübner Christian A, Wood John, Leipold Enrico, Kurth Ingo, Haag Natja
| 期刊: | Pain | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 166(4):773-792 |
| doi: | 10.1097/j.pain.0000000000003411 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
