Cannabidiol reduces synaptic strength and neuronal firing in layer V pyramidal neurons of the human cortex with drug-resistant epilepsy.

大麻二酚可降低药物难治性癫痫患者大脑皮层第五层锥体神经元的突触强度和神经元放电频率

阅读:5
作者:Martinez-Rojas Vladimir A, Márquez Luis A, Martinez-Aguirre Christopher, Sollozo-Dupont Isabel, López Preza Félix Iván, Fuentes Mejía Monserrat, Alonso Mario, Rocha Luisa, Galván Emilio J
The use of cannabidiol (CBD) as an alternative pharmacological approach for the symptomatic management of epilepsy has gained attention due to its potential efficacy, particularly in drug-resistant cases of epilepsy. Although multiple studies have described that CBD reduces neuronal hyperexcitability, the mechanistic basis of CBD remains a topic of ongoing research. In this study, we provide an electrophysiological portrayal of CBD's effects on the glutamatergic transmission and intrinsic excitability of layer V pyramidal neurons of the human neocortex resected from drug-resistant epilepsy patients. The perfusion of CBD transiently depressed the field excitatory potential amplitude elicited in layer I/II and recorded in layer V without altering the paired-pulse ratio, suggesting a postsynaptic locus of action for CBD. Cortical slices perfused with 4-aminopyridine exhibited an increased number of spontaneous synaptic events that were abolished in the presence of CBD. At the cellular level, whole-cell patch-clamp recordings showed that CBD decreased the excitability of layer V pyramidal neurons, as evidenced by changes in the somatic input resistance, the membrane time constant, the hyperpolarization-induced "sag" conductance, the rheobase current needed to elicit an action potential, and the firing discharge in response to depolarizing current steps. Consistent with the last observation, CBD decreased the amplitude of the TTX-sensitive inward currents without altering the kinetics of the macroscopic outwardly directed currents. CBD washout restored the passive and active electrophysiological properties of pyramidal neurons. Collectively, these experiments demonstrate that CBD decreases the neuronal excitability of human cortical neurons from patients with drug-resistant epilepsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。