Neonatal hyperbilirubinemia may result in long-lasting motor, auditory and learning impairments. The mechanisms responsible for the localization of unconjugated bilirubin (UCB) to specific brain areas as well as those involved in potentially permanent central nervous system (CNS) dysfunctions are far from being clear. One area of investigation includes exploring how hyperbilirubinemia determines neuronal alterations predisposing to neurodevelopmental disorders. We focused on the hippocampus and pyramidal cell dysregulation of calcium homeostasis and synaptic activity, with a particular focus on early forms of correlated network activity, i.e., giant depolarizing potentials (GDPs), crucially involved in shaping mature synaptic networks. We performed live calcium imaging and patch clamp recordings from acute hippocampal slices isolated from wild-type rats exposed to exogenous high bilirubin concentration. We then explored the impact of endogenous bilirubin accumulation in hippocampal slices isolated from a genetic model of hyperbilirubinemia, i.e., Gunn rats. Our data show in both models an age-dependent dysregulation of calcium dynamics accompanied by severe alterations in GDPs, which were strongly reduced in hippocampal slices of hyperbilirubinemic rats, where the expression of GABAergic neurotransmission markers was also altered. We propose that hyperbilirubinemia damages neurons and affects the refinement of GABAergic synaptic circuitry during a critical period of hippocampal development.
Bilirubin Triggers Calcium Elevations and Dysregulates Giant Depolarizing Potentials During Rat Hippocampus Maturation.
胆红素在鼠海马成熟过程中引发钙离子升高并扰乱巨型去极化电位
阅读:7
作者:Cellot Giada, Di Mauro Giuseppe, Ricci Chiara, Tiribelli Claudio, Bellarosa Cristina, Ballerini Laura
| 期刊: | Cells | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 Jan 23; 14(3):172 |
| doi: | 10.3390/cells14030172 | 种属: | Rat |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
