IK Channel Confers Fine-tuning of Rod Bipolar Cell Excitation and Synaptic Transmission in the Retina.

IK通道可对视网膜中的视杆双极细胞兴奋和突触传递进行精细调节

阅读:16
作者:Park Yong Soo, Sung Ki-Wug, Kim In-Beom
During retinal visual processing, rod bipolar cells (RBC) transfer scotopic signals from rods to AII amacrine cells as second-order neurons. Elucidation of the RBC's excitation/inhibition is essential for understanding the visual signal transmission. Excitation mechanisms via mGluR6 and voltage-gated Ca2+ channels in the RBCs and GABAergic inhibitory synaptic inputs have been studied in previous studies. However, its intrinsic inhibitory mechanisms like K+ and Cl- channels remain unclear. We focused on RBC's prominent K+ current, which exhibits voltage and Ca2+ dependence. We isolated and confirmed the expression of intermediate-conductance Ca2+-activated K+ channels (IK) in RBCs using the patch-clamp method with IK inhibitors (clotrimazole and TRAM34) and immunohistochemistry. The regulation of the IK channel primarily relies on Ca2+ influx via low-threshold Ca2+ channels during RBC's excitation. Additionally, IK mediates late repolarization and suppresses excessive oscillation of the membrane potential in the RBCs, enabling fast and transient synaptic transmission to AII amacrine cells. Our findings highlight the unique role of the IK channel in RBCs, suggesting that it plays a critical role in the scotopic pathway by fine-tuning RBC activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。