Transversely-isotropic brain in vivo MR elastography with anisotropic damping.

横向各向同性脑组织体内磁共振弹性成像,具有各向异性阻尼

阅读:16
作者:Jyoti Dhrubo, McGarry Matthew, Caban-Rivera Diego A, Van Houten Elijah, Johnson Curtis L, Paulsen Keith
Measuring tissue parameters from increasingly sophisticated mechanical property models may uncover new contrast mechanisms with clinical utility. Building on previous work on in vivo brain MR elastography (MRE) with a transversely-isotropic with isotropic damping (TI-ID) model, we explore a new transversely-isotropic with anisotropic damping (TI-AD) model that involves six independent parameters describing direction-dependent behavior for both stiffness and damping. The direction of mechanical anisotropy is determined by diffusion tensor imaging and we fit three complex-valued moduli distributions across the full brain volume to minimize differences between measured and modeled displacements. We demonstrate spatially accurate property reconstruction in an idealized shell phantom simulation, as well as an ensemble of 20 realistic, randomly-generated simulated brains. We characterize the simulated precisions of all six parameters across major white matter tracts to be high, suggesting that they can be measured independently with acceptable accuracy from MRE data. Finally, we present in vivo anisotropic damping MRE reconstruction data. We perform t-tests on eight repeated MRE brain exams on a single-subject, and find that the three damping parameters are statistically distinct for most tracts, lobes and the whole brain. We also show that population variations in a 17-subject cohort exceed single-subject measurement repeatability for most tracts, lobes and whole brain, for all six parameters. These results suggest that the TI-AD model offers new information that may support differential diagnosis of brain diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。