Tumor-targeted drug delivery enhances therapeutic efficacy while minimizing toxicity. Layer-by-layer nanoparticles (LbL-NPs) coated with anionic polypeptides selectively bind to cancer cells, though the mechanisms have been unclear. Here, we integrated in silico and in vitro approaches-including gene expression analysis, receptor inhibition, and AI-based protein modeling-to show that poly(L-glutamate) (PLE)-coated LbL-NPs bind with high avidity to SLC1A5, a glutamine transporter overexpressed in cancer. We also discovered that PLE clusters SLC1A5 on the cell membrane, promoting prolonged cell surface retention. Poly(L-aspartate) (PLD)-coated NPs similarly bind SLC1A5 but also interact with faster internalizing transporters of anionic amino acids. Correlation analyses across cancer cell lines confirmed a strong link between transporter expression and nanoparticle association. These findings demonstrate that dense glutamate or aspartate presentation through electrostatically adsorbed polypeptides enables selective targeting of overexpressed transporters, providing a mechanistic framework for receptor-targeted delivery that leverages metabolic characteristics of a range of solid tumor types.
Surface avidity of anionic polypeptide coatings target nanoparticles to cancer-associated amino acid transporters.
阴离子多肽涂层的表面亲和力可将纳米颗粒靶向癌症相关的氨基酸转运体
阅读:4
作者:Pires Ivan S, Billingsley Margaret M, Gordon Ezra, Pickering Andrew J, Cai Eva, Esparza Gonzalo J, Pryor Mae L, Stoneman Alexander D, Irvine Darrell J, Hammond Paula T
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 31 |
| doi: | 10.1101/2025.07.28.667320 | 研究方向: | 肿瘤 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
