A genetically encoded secreted toxin potentiates synaptic NMDA receptors in hippocampal neurons and confers neuroprotection.

一种基因编码的分泌毒素可增强海马神经元突触NMDA受体的功能,从而发挥神经保护作用

阅读:15
作者:Carmi Ido, Zoabi Shaden, Bittan Asaf M, Kellner Shai, Oz Shimrit, Heinrich Ronit, Berlin Shai
NMDA receptors (NMDARs) play essential roles in neuronal development, survival, and synaptic plasticity, to name a few. However, dysregulation in receptors' activity can lead to neuronal and synaptic damage, contributing to the development of various brain pathologies. Current pharmacological treatments targeting NMDARs remain limited, for instance due to insufficient receptor selectivity and poor spatial targeting. Genetic approaches hold promise to overcome some of these issues; however, require genetically encodable NMDAR-modulating peptides, which are scarce. Here, we explored NMDAR-selective peptide toxins from marine cone snails, which resulted in the necessary engineering of a posttranslational modification-free variant of Conantokin-P (naked Con-P). The naked form is essential for expression in mammalian cells. We systematically explored the naked variant and discovered that naked Con-P maintains its ability to inhibit GluN2B-containing receptors, but uniquely acquired the ability to potentiate GluN2A-containing synaptic receptors. We then engineered a secreted naked Con-P that readily enhances NMDAR-mediated synaptic events in primary hippocampal neurons, and mitigates neuronal damage induced by staurosporine. We therefore provide a genetically encodable, subtype selective, and secreted bimodulator of NMDARs. This new variant and approach should pave the way for the development of additional genetic tools, specifically tailored to target NMDARs within distinct cellular populations in the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。