OBJECTIVE: The blood-brain barrier (BBB) is a semi-permeable microvascular barrier, composed of endothelial cells conjoined by tight junction proteins. Following pathological conditions, i.e., traumatic brain injury (TBI), BBB dysfunction occurs, leading to microvascular hyperpermeability, resulting in cerebral edema formation and elevated intracranial pressure. Recent evidence suggests that the activation of pro-inflammatory signaling pathways is critical to BBB dysfunction. The NLRP3 inflammasome has been implicated as a key component of pro-inflammatory signaling. The aim of this study was to determine the upstream regulators of NLRP3 inflammasome activation that cause subsequent BBB aberration and microvascular hyperpermeability. METHODS: Brain microvascular endothelial cells were exposed to benzoyl ATP (BzATP) with or without MCC950. We employed immunocytochemical localization of tight junction proteins, fluorometric enzymatic assays, total gene expression analyses of ZO-1, and monolayer permeability studies to assess the effect of BzATP-induced injury on NLRP3 inflammasome activation/inhibition. RESULTS: BzATP treatment induced monolayer hyperpermeability and increased caspase-1 and MMP-9 activities. NLRP3 inhibition decreased caspase-1 and MMP-9 activities and rescued BzATP-induced monolayer permeability significantly. CONCLUSIONS: NLRP3 inflammasome signaling is critical to BBB endothelial cell dysfunction. Extracellular ATP is an upstream promoter of BBB hyperpermeability. NLRP3 inflammasome activation leads to subsequent caspase-1 and MMP-9-mediated tight junction protein disarray.
Regulation of BzATP-Induced Blood-Brain Barrier Endothelial Cell Hyperpermeability by NLRP3 Inflammasome Inhibition.
NLRP3炎症小体抑制对BzATP诱导的血脑屏障内皮细胞高通透性的调节
阅读:6
作者:Anderson Aliyah, Waithe O'lisa Yaa, Seplovich Gabriela, Olagunju Oluwatoyin, Greene Christlyn, Singh Amrendra, Muthusamy Saravanakumar, Tharakan Binu
| 期刊: | Microcirculation | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Apr;32(3):e70006 |
| doi: | 10.1111/micc.70006 | 研究方向: | 细胞生物学 |
| 信号通路: | 炎性小体 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
